
OPTIMALITY ATJD STRONG STABILITY OF CONTROL SYSTEMS* 

4 ' :  J. P. LaSalle and Ssn Wan 

Center f o r  Dynamical Systems, Division of Applied Mathematics 

Brown University 

Coimunicated by Solomon Lefscbetz, June 26, 1968 

1. Introducti-on. 

A necessary a t t r i bu te  of any r e a l  control system i s  t h a t  it 
be s tab le  under perturbations, and the  oldest  method of designing 

feedback control systems i s  based upon making the  desired state 

asymptotically s tab le  i n  the  l i nea r  approximation. 

t o  J. C. 14ax~ell'- i n  1868 and J. Vyskegradskii' i n  1876. 

recent optimal control  theory it is  well  known f o r  i n f i n i t e  time 

This dates back 

I n  more 

optimal control that  the  desired state w i l l  be asymptotically s table  

i f  the  integrand of the  performance functional i s  posi t ive def in i te .  

Examples are  a lso known of some special  control systems, which 

reduce the  e r ror  i n  control  t o  zero i n  f i n i t e  tjme, t h a t  have a 

'' strong s tab i l i ty" .  I n  general, however, there  i s  very l i t t l e  

known about s t a b i l i t y  under perturbations of optimal control systems 

par t icu lar ly  when the  control  i s  over a f i n i t e  period of t i m e  and 

the  cont ro l  as a function of the  s t a t e  of t he  system has discontinu- 

i t ies.  Systems which a re  designed t o  reduce the  e r ror  i n  control  

t o  zero i n  minirnm time behave badly (e.g., chattering) when the  

error  i s  small due t o  time delays i n  switching and other perturba- 

t ions.  Thus near t he  desired stat,e the  system i 8  of ten designed 
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In this paper, results are presented which indicate that con- 

siderable improvement in performance can be expected by designing the 

system t o  be time optimal t o  a small neighborhood of the desired state 

rather than designing it to be optima.1 t o  the desired state itself, 

We restrict ourselves here t o  normal au.tonomous linear time optimal 

control systems with the objective t o  reach a small ball around 

the origin ( t o  achieve a small erroT in control) in minimum time, 

are then able t o  show that this time optimal control has a strong 

stability under perturbations and is in a certain sense the "best" 

of a l l  "stabilizing controls". 

4 

We 

5 

The theory indicates th6 advantages of this time optimal 

control shmld be that 1) the neighborhood. where the optimal con- 

trol behaves badly should be smaller, 2) the time t o  reach this 

neighborhood is a minimum, 3 )  outside the neighborhood the stability 

under perturbations is stronger, and 4) the computation of optimal 

control  is easier because of the additional transversality condition. 

2. Optimality. 

dx 
dt 

The mathematical model for the control system is (k = -) 

where the state of system x is an n-vector, u is the control 

function and is an r-vector, A is a constant n x n matrix, and 

B is a constant n x r matrix. We consider first of all the class 
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R of admissible open loop controls u( t )  with the property t h a t  

u i s  measurable on f i n i t e  intervals  of [0,m) and i s  l imited i n  

magnitude by 1 u. (t) I 6 1, i = 1,. . .,r. The t a rge t  i s  the b a l l  
1 

a= (x; 1x1 5 E) 

We assume tha t  the system i s  normal, which implies t h a t  the time 

optimal control t o  h i t  9 i s  fo r  each i n i t i a l  s t a t e  

unique and bang-bang. 

of radius E about the or igin and S = [x; 1x1 = E].  

0 x(0) = x 
4 

L e t  T(x)(x # 8) be the minimum time t o  go from x to 

and define E(%) = [x; T(x) = t), t L 0. The s e t  c(t) i s  an 

isochrone. It i s  then not d i f f i c u l t  t o  see t h a t  

i) c(t) is the boundary of a s t r i c t l y  convex compact s e t  

&(t) f o r  each t > 0. 

ti) If xo E c(t) and the optimal control from xo t o  9 
-At 

h i t s  L%' a t  v, then v1 i s  an outward normal to 

d(t) a t  xo and E(%) i s  different iable  a t  xo (has 

a unique support hyperplane a t  x ). 0 

It can then be shown t h a t  

Theorem 1. On i t s  domain of def ini t ion T(xo) i s  continuously 

differentiable.  

3 .  Strong Stabi l i ty .  

We want t o  define now as large a class  @ of adnissible 

feedback controls ~ ( x )  as we can which sa t i s fy  l(pi(x)l 6 1 for 

i = 1 ,..., r. Since for  x outside D = u &'(t), there  i s  no 0 

tx) 
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admissible (open loop) control  u ( t )  t h a t  brings (1) within D, 

we confine ourselves t o  D. We w i l l  say t h a t  cp c: i f  i n  some 

sense there i s  for  each x E: D a uniquely d-efined solution x ( t )  0 

of 

H = A x  -1- Bp(X)  ( 2 )  

0 fo r  each x c: D f o r  as  long as x ( t )  E D (t > 0) and which i s  

such t h a t  u ( t )  = cp(x(t)) i s  an admissible open loop control (u E Q). 

The time optimal feedback control cp*(x) obtained by synthesizing the 

optimal open loop control  

control. 

* 
u (t) i s  c lear ly  an optimal feedback 

It i s  then rather  easy to show, from the above, t h a t  t h i s  

optimal control has the  following strong s t a b i l i t y  property. 
_ -  -._._. .. 

Up to now we have suppressed dependence on c: ,  Taking t h i s  

in to  account we replace d(t,) by &(t,,c:) and 9 by g(c:). 

Consider the perturbed system I 

Then 

Theorem 2. Given tl > 0 - and E: > 0 there ex i s t s  p(tl,c:) such t h a t  

then f o r  some T(pl) each solution of (3) s t a r t i ng  i n  d ( t , , E )  

reaches g(c:) i n  time l e s s  than T(pl). 
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Aswith  an asymptotically s tab le  equilibrium it can happen 

t h a t  p(tl, E) -+ 0 as E 3 0. However, here t h e  time t o  reach 

g( E) approaches tl as E: 3 0 and d(tl, 0) C d(tl, E) for  

a l l  E > 0. For a normal system &(tl,O), the  at ta inable  s e t  t o  

the or ig in  i n  time 

or igin i n  i t s  in t e r io r )  but i t s  boundary w i l l ,  i n  general, not be 

smooth. 

tl, is  s t r i c t l y  convex (and hence contains the  

The general pr inciple  behind t h i s  r e s u l t  on strong s t a b i l i t y  

applies t o  much more general s i tua t ions  and we have presented here 

the simplest possible case. 
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Throughout we follow the notations 

5 ~ h i s  is  
introduced by P. 
a given class  of 
The existence of 
when n = 2 and 

related t o  a concept of a "best  s tab i l iz ing  control" 
Brunovsky. On the best  s tab i l iz ing  control under 
perturbations, Czech. Math. J. 13 (1963), 329-369. 
a "best s tab i l iz ing  control" was shown i n  t h i s  paper 
r = 1. Brunovsky has since proved t h i s  i n  the 

general case (private communication). 


